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Abstract — In the paper we present two possible approaches for a soft real-time 
acquisition under Windows XP. The first approach is based on a high priority  
thread and the second one on a local advanced programmable interrupt control-
ler (LAPIC). 
Robustness was evaluated on unloaded and loaded system. In order to assess 
real-time system performance we analyzed sampling time histograms and maxi-
mum timing error. Both approaches perform satisfactory on unloaded system. On 
loaded system LAPIC approach shows better robustness. Although sampling time 
histograms show bigger errors on loaded systems than on unloaded systems, 
maximum timing error does not change significantly for the LAPIC approach. 

1 Introduction 

1.1 Real-time control and acquisition 

Real-time operation means that some particular action as response to a given condition 
has to happen within given timing constrains. Condition can be fulfilled by event 
(event triggered systems) or by time (time-triggered systems) [1]. Here we will deal 
only with time-triggered systems. 

An example of a time-triggered real-time system is control of a robot. Current posi-
tion of the manipulator is first read via encoders. In the next step is desired excitation 
for actuators calculated by the control algorithm. Finally is excitation applied to power 
amplifiers, which drive robot’s motors. The control algorithm must perform each step 
of the control loop within specified timing constrains. If timing requirements are not 
fulfilled, control performance will degrade and in worst case instability can occur [2], 
[3]. 

Timing constrains are given in terms of control delay, control period, jitter and tran-
sient error [4]. Control delay is the time between a sampling instance and its corre-
sponding actuator output. It should be as small as possible for improved control per-
formance. Control period is rate of actions and should be based on system dynamics. 
In a single-rate system is the control period equal to the sampling period. A smaller 
control period does not necessarily improve control performance – instead it should be 
within a range. Jitter is defined by IEEE as “time-related, abrupt, spurious (false) 
variations in the duration of any specified related interval” [5]. It arises because of 
clock drift, branching in the code, scheduling, communications and use of certain 



JUSTIN CINKELJ, MATJAZ MIHELJ, MARKO MUNIH 

hardware (cache memory) [6], [7], [8]. It should be as small as possible. Transient 
error can be seen as a special case of time variation. It is related (but not restricted) to 
hardware errors, which arise due to an internal or external fault.  An undetected and 
uncorrected fault can lead to unpredictable malfunction, a system failure. 

Real-time systems can be divided into hard and soft real-time systems. Hard real-
time system is the one that must, without failing, generate a response to an event 
within a specified time window. Robot control requires use of hard real-time system, 
since malfunction could damage manipulator, other equipment or people. Soft real-
time system is the one that should fulfill timing requirements. “Should” means that a 
system is allowed to occasionally miss the deadline. 

Data acquisition systems are usually less susceptible to inexact timing. This makes 
them candidates for application of a soft real-time system [9], [10]. In an acquisition 
system timing requirements are described in terms of sampling period and jitter. Sam-
pling period should again be based on system dynamics – Shannon’s sampling theo-
rem should be fulfilled. Jitter should be minimized. Figure 1 shows the error intro-
duced by jitter. The sample is assumed to be acquired at moment t(i), but actually it is 
acquired at t(i)+jitter(i). Consequence is that acquired data lies at point B instead at A. 
This introduces error of ∆U(i). The same error is introduced if data is acquired at cor-
rect time t(i) and an inaccurate (unstable, noisy) sensor reads value at C instead at A. 
We see that unfulfillment of timing requirement can degrade acquired data the same 
way as use of an inaccurate measurement device. 

 

Figure 1: Jitter introduced error 

1.2 Measurement in ALLADIN project 

The ALLADIN project focuses on development of a measurement and analysis sys-
tem for decision support in neuro-rehabilitation, in particular in stroke. Final product 
of the project should help predict final outcome of the therapy in early stages of the 
therapy and suggest best possible method of therapy. 

Data is collected by multi channel isometric force/torque measurement using JR3 
force/torque sensors (JR3 Inc., Woodland, California, USA). Each of 8 sensors trans-
fers data to a personal computer (PC) as digital stream with 8000 samples per second. 
Digital data are received by JR3 receiver boards. The receiver boards provide host PC 
with processed data. Data are not buffered. Since receiver boards store only last sam-
ple, use of a real-time acquisition is required. 
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The acquisition system is running on Windows XP operating system (OS) (Micro-
soft, Redmond, Washington, USA), mainly because physiotherapists as the end users 
are familiar with it. However Windows OS does not support a real-time operation. 
Because of that a soft real-time support for Windows OS was implemented. 

Required sampling frequency is 100 Hz. It is lower that sensor sampling frequency 
because in this measuring system forces are generated by a human, meaning that fre-
quency range is below 30 Hz. Jitter has to be under 1 ms. The acquisition computer is 
expected to be loaded during acquisition with video playback, reading and writing 
files to and from hard disk and with network communication. 

In the paper are presented two approaches for a soft real-time acquisition. One is 
based on a high priority thread and second one interrupts from LAPIC timer. Robust-
ness was tested on an unloaded and a loaded system. Sampling time histograms and 
maximum timing error was used to assess performance of the implemented soft real-
time acquisition systems. 

2 Methodology 

2.1 Hardware platform 

Soft real-time operation was analyzed on 2 different computers. Table 1 lists their 
main characteristics. 

 CPU type CPU frequency Motherboard System bus 
frequency 

System 1 Two Pentium III 500 MHz ASUS P2B-DS 100 MHz 
System 2 Pentium 4 with 

hyperthreading 
2.8 GHz Gigabyte GA-

81848P 
200 MHz 

Table 1: Hardware platform 

2.2 Implemented drivers for real-time work 

In order to have a maximum control over the OS the real-time support was imple-
mented in a driver. Driver does not need to use unpredictable Win32 API [11] and 
have a direct access to the hardware. Two approaches have been tested, the first one 
based on a working thread [12] and the second one on interrupts, generated by the 
local advanced programmable interrupt controller (LAPIC). 

The first driver creates a working thread with the highest possible priority - 
HIGH_PRIORITY. The thread then waits in a busy-wait loop until the moment arrives 
to acquire a sample. Busy-wait loop would ideally last whole acquisition period. It 
controls the sample period and has also effect of a buffer (a trading delay for jitter) 
that minimizes jitter [4]. A thread with HIGH_PRIORITY priority can not be pre-
empted by other threads. That requires use of a dual processor PC, otherwise the PC 
will appear to “freeze” until acquisition ends. Interrupts (both interrupt service rou-
tines - ISRs and deferred procedure calls – DPCs) can preempt the thread [13]. 

The second driver uses a local advanced programmable interrupt controller 
(LAPIC), located on a CPU. The LAPIC contains a timer, which can be programmed 
to deliver one shot or periodic interrupts to the CPU [14]. This timer runs with the 
frequency of the system bus and is not used by the OS. To program the timer it is re-
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quired to bypass Windows OS and work directly with the hardware. Highest priority 
interrupt level (interrupt vector in range 0xF0 to 0xFF) is used, so that the LAPIC 
timer interrupt can interrupt interrupts of lower priority [15]. Delay can still occur if 
interrupts are disabled by reset of flag IF in EFLAGS register (use of CLI instruction). 

Again a dual processor machine has to be used, this time because Windows disables 
the LAPIC on an uniprocessor systems. After that the LAPIC remains disabled until 
reboot [15]. 

2.3 Procedures 

Real-time performance was evaluated on an unloaded and a loaded system. On loaded 
system a compressed video and 3D openGL graphics were simultaneously played, a 
file was copied from the network to the local disk and two instances of Matlab were 
using remaining processing time. Graphics was used because DMA transfers made by 
the graphic card can occupy the system bus when real-time task needs to transfer data 
over the system bus. This can cause delay in execution of the real-time task [16], [17]. 
Copying of a file causes interrupts from the network card and the hard disk and also 
DMA transfers. 

Loaded system presents much worse conditions than those expected during use of 
the developed acquisition system. With loaded system we are trying to simulate worst 
case conditions. If system performs well under heavy stress, we can expect with 
higher probabillity that it will works on lightly loaded system too. This is to nece-
sarilly to gain some safety margin. 

Requested sampling frequencies were 5 and 10 kHz. Length of a single acquisition 
was 30 s. Time was measured with the RDTSC instruction – corresponding timer runs 
with the frequency of the processor core. 

2.4 Analysis 

Analysis is based on a maximum jitter and on histograms of the sampling period. His-
tograms are also summarized in tables which show percentage of samples outside of a 
given tolerance. 

3 Results 

Table 2 shows that both drivers perform well on unloaded systems. Almost no sam-
ples have jitter bigger than 10 µs. 

  Tolerance [µs]     
  50 10 5 1 0.5 0.1 
System 1 Thread 0.00 0.02 0.04 0.06 0.07 11.49 
 LAPIC 0.00 0.00 0.00 0.04 0.13 1.02 
System 2 Thread 0.00 0.01 0.02 0.07 0.21 1.37 
 LAPIC 0.00 0.01 0.02 0.48 0.66 2.99 

Table 2: Percentage of jitter outside of the tolerance, unloaded systems at 10 kHz 

In Figures 2 and 3 are shown timing histograms for data acquired on the loaded sys-
tem 1 with the sampling frequency of 10 kHz by the working thread and the LAPIC 
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driver, respectively. For the thread frequently samples with jitter of a few 100 µs oc-
cur.  but most of the time is jitter bellow 100 µs. For the LAPIC driver is maximal 
jitter 11.3 µs, and typically below 5 µs. 
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   Figure 2: Loaded system 1, thread            Figure 3: Loaded system 1, LAPIC 
 histogram at 10 kHz                                 histogram at 10 kHz 

Figures 4 and 5 show the same timing histograms, but now for the loaded system 2. 
LAPIC has maximal jitter of approximately 40 µs, typically below 10 µs. Thread has 
worst jitter over 200 µs, typically up to 100 µs. Thread is again worse then LAPIC. 

 

   Figure 4: Loaded system 2, thread            Figure 5: Loaded system 2, LAPIC 
 histogram at 10 kHz                                 histogram at 10 kHz 

Distribution of sampling times shows on loaded systems better robustness of the 
LAPIC approach. Table 3 shows significant percentage of samples outside of 10 µs 
tolerance for the thread driver, but almost none for the LAPIC driver. 

    Tolerance [µs]         
    50 10 5 1 0.5 0.1
System 1 Thread 0.15 0.99 1.17 1.35 1.37 12.66
  LAPIC 0.00 0.00 0.01 1.03 4.85 36.51
System 2 Thread 0.46 1.39 1.66 1.99 2.78 15.87
  LAPIC 0.00 0.01 0.03 1.91 7.94 26.15

Table 3: Percentage of jitter outside of tolerance, loaded systems at 10 kHz 
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Table 4 shows maximal jitter for all tests. Better performance of the LAPIC driver is 
seen once more. The thread driver on a loaded system has a much larger jitter than on 
an unloaded system. The difference unloaded – loaded system is for the LAPIC driver 
small and statistically not significant. Difference between 5 kHz and 10 kHz case is 
also not significant, except for the LAPIC driver on the unloaded system 1. 

    unloaded   loaded   
    5 kHz 10 kHz 5 kHz 10 kHz 
System 1 Thread 45.2 53.6 973.9 823.6 
  LAPIC 3.4 11.2 12.6 11.3 
System 2 Thread 20.1 27.0 184.6 227.2 
  LAPIC 45.2 46.6 35.2 40.6 

Table 4: Maximum jitter in µs 

4 Discussion 

The LAPIC driver does not only give a lower average jitter than the thread driver, but 
is also less sensitive to the loading of the system. Jitter of the LAPIC driver could be 
further minimized by the use of a buffer (trading delay for jitter), implemented as a 
busy wait loop. 

When interpreting the results, we have to be aware that a different loading of the 
system could significantly change results. Loaded system was only a simulation of a 
worst case load. Timing can be also affected by a prolonged masking of interrupts in 
ill-behaved drivers. This would degrade performance of both approaches. 

The LAPIC driver has to use an interrupt vector, which is not used by the Windows. 
If chosen interrupt vector is used by the OS, some interrupts will be delivered to the 
LAPIC ISR instead to the OS. Such situation will most likely cause a crash. Selection 
can be verified by trial and error, but it can not be guarantied that it is not used by 
only rarely occurring interrupt.  
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